
BACKTALK

December 2005 www.stsc.hill.af.mil 31

At the National Radio Astronomy Observatory’s (NRAO)
Science Center in Green Bank, W. Va., visitors curious

about radio astronomy and the observatory’s history and oper-
ations will discover an educational, entertaining experience.
Employees also visit the science center, but their thoughts are
more on afternoon snacks rather than distant galaxies. The
employees of NRAO’s Software Development Division in
Green Bank have gained tremendous insight on the topic of
software usability from many visits to the Science Center Café
by pontificating upon the wisdom inherent in the design and
use of the liquid cheese dispenser there.

The cheese dispenser is used to coat nacho chips in the
familiar orange-tinted, viscous plasma prior to the addition of
jalapeno peppers (or other toppers), intended to enhance the
consumer’s experience of the food product. The user interface
is clear and unambiguous, with a single, large, bright yellow
button labeled Push for Cheese. When the button is
depressed, a stream of hot liquid cheese is
expelled from the machine and onto what-
ever lies below. The cheese is remarkably
consistent in its appearance,
texture, and temperature.
There is always only one variety
of cheese dispensed.

Over the past three years, our
team has spent considerable time
and effort to improve the software
systems used to make astronomical
observations with the Robert C. Byrd
Green Bank Telescope (GBT). During
this time, we’ve discovered that the ulti-
mate measure of GBT software usability is
how well the user’s experience conforms to
what happens when they Push for Cheese. Our
users want to press one button, have the software automatical-
ly interpret what they want the telescope to do, then see their
results presented in a comprehensive, straightforward way.
Though it’s a lot to ask from software (especially since there
are thousands of ways the GBT can be configured), similar
concepts have been envisioned for years: In 1950, Turing
argued that within five decades, computers would be intelligent
[1]. In 1990, Newell presented his vision of a fully networked,
intelligent environment in which machines and humans seam-
lessly interact (ubiquitous computing) [2]. At least in our envi-
ronment, the knowledge embodied in the software is closely
related to its perceived usability.

The International Organization for Standardization 9241
Part 11 defines usability as the “extent to which a product can
be used by specified users to achieve specified goals with effec-
tiveness, efficiency, and satisfaction in a specified context of
use” [3]. Implicit in this definition is the notion of expecta-
tions because machines (and software) will only express the
intelligence we seek. Who are our specified users? What is the
context of use? How can we define and measure satisfaction?
Here’s what we’ve learned:
• Our users ultimately want a Push-for-Cheese user interface,

where minimal and straightforward interactions with the soft-

ware achieve the desired result.
• Conversely, users don’t want the software to make too many

assumptions on their behalf. As a result, more options may be
required to achieve the balance between ease of use and soft-
ware that’s too smart for its own good. Push for Cheese assumes
that the consumer wants liquid nacho cheese, which is a fine
assumption for nachos, but not for a grilled cheese sandwich.

• Expectations are critical. Additional options can be designed
into the system, but to add them, we must first establish
requirements then develop, test, and deploy, which requires
time and effort. Anyone who expects Brie or Swiss on their
nachos when they Push for Cheese will be disappointed
unless we’ve planned for other cheeses in advance.

• Even within a well-defined segment of specified users, there
will still be substantial subjective variation in what’s consid-

ered easy to use, which must be aggregated and nor-
malized.

• Establish usability requirements dur-
ing the analysis stages of a project

to set bounds. A user expect-
ing a graphical user interface
won’t like a command-line

driven program; similarly, one
who wants to specify many set-
tings before execution will not be

pleased with intelligent software
that selects and tweaks settings

automatically.
In addition to illustrating

these lessons, Push for Cheese has also
become an effective way to communicate

within our team. When a usability feature
more akin to machine intelligence or ubiquitous

computing is requested, and is posited to us under the guise of
ease of use, we console each other by affirming that they just
want to Push for Cheese. In doing so, we compassionately
acknowledge their desires, and then move to meet them
halfway in implementation – while keeping the Push-for-
Cheese vision for usability close to our hearts.

— Nicole Radziwill
— Amy Shelton

National Radio Astronomy Observatory
nradziwi@nrao.edu

References
1. Taatgen, N.A. “Poppering the Newell Test.” Netherlands:

University of Groningen, 2003 <www.ai.rug.nl/prepubli
cations/BBSAlcom-NT-2003.pdf>.

2. Gray, J. 1999: “What Next? A Dozen Information Technol-
ogy Research Goals.” MSR-TR-99-50. Redmond, WA:
Microsoft Research, June 1999 <http://research.microsoft.
com/research/pubs/view.aspx?msr_tr_id=MSR-TR-99-50>.

3. International Organization for Standardization. “ISO 9241
Part 11: Guidance on Usability.” Geneva, Switzerland: ISO,
1998 <www.userfocus.co.uk/resources/iso9241/part11.
html>.

Push for Cheese:
A Metaphor for Software Usability


